

0040-4039(94)02167-8

Diastereoface Selectivity in Radical-Mediated C-C Bond Formation of Uridine 5'-Monoselenoacetals

Kazuhiro Haraguchi, Hiromichi Tanaka,* Shigeru Saito, Kentaro Yamaguchi, and Tadashi Miyasaka

School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142

Key Words: radical reaction; Cram's rule; uridine; monoselenoacetal; diastereoselectivity

Abstract: Intramolecular radical reaction of 2',3'-O-isopropylideneuridine 5'-monoselenoacetal 6 appeared to result in reverse stereoselectivity to that of the corresponding 5'-aidehyde (3). Intermolecular version of this reaction by using allyltributylstannane as a radical acceptor showed preferential anti-Cram diastereoface selection.

Nucleophilic 1,2-addition of allyl organometallics to 5-aldehyde of methyl 2,3-O-isopropylidene- β -Dribofuranoside (1) has been reported and its stereoselectivity is summarized on the basis of Cram's rule.¹) That is, the use of allylmagnesium bromide or allyltrimethylsilane/BF₃·OEt₂ permits preferential *re*-face attack to the unchelated aldehyde having a C4-C5 conformation depicted in the structure 1, which yields the allylated carbinol of (5*R*)-configuration (2). Presumably due to its well-defined stereochemistry, the reaction of allylmagnesium bromide with 2',3'-O-isopropylideneuridine 5'-aldehyde (3) has been employed as a key step in the total synthesis of a nucleoside antibiotic, octosyl acid A.²)

It has been demonstrated that stereochemical course of certain radical reactions also follows Cram's rule.³) Ueda *et al.* reported that, when 3 was reacted with Bu₃SnH in the presence of AIBN, a radical-mediated intramolecular nucleophilic addition to the 5,6-double bond took place to give (5'S, 6S)-isomer 4 exclusively.⁴) This result can be interpreted by assuming that the α -stannyloxy 5'-carbon-radical generated from 3 would have been at work with a C4'-C5' conformation like 5 and the uracil moiety reacted from 5's *si*-face.⁵) A recent report concerning radical cyclization of a uridine derivative having a silvlated monoselenoacetal structure at the 5'-position⁽⁵⁾ led us to publish here the results of our study. In this communication, we describe that stereochemical outcome of intramolecular radical reaction of uridine 5'-monoselenoacetal 6 is reverse to the above precedent of Ueda *et al.* with respect to the 5'-position. We have also examined the intermolecular version of this reaction by using allyltributylstannane and observed the preferential formation of anti-Cram product. Factors governing the stereoselectivity are briefly discussed.

Compound 6 (a mixture of two diastereomers, ca. 2:1) was prepared through Pummerer type rearrangement of 5'-deoxy-2',3'-O-isopropylidene-5'-phenylselenouridine as reported previously.⁷) When homolytic cleavage of the C5'-Se bond in 6 was carried out by adding a benzene solution of Bu₃SnH (2 equiv)/AIBN (0.5 equiv) at refluxing temperature (*via* syringe pump, over 4 h), two isomeric products [FAB-MS m/z 327 (M⁺+H)] were obtained. The major product (mp 182-184 °C, acetone/hexane) isolated in 57% yield appeared to be the (SR, 6S)-isomer 7 by virtue of its X-ray crystallographic analysis,⁸) while the minor product (16%) was determined to have (5'S, 6S)-stereochemistry based on ¹H NMR spectroscopy by examining its $J_{4',5'}$ and $J_{5',6}$ values.⁹) When the above radical reaction of 6 was performed at room temperature under photochemically initiated conditions, Bu₃SnH/(Bu₃Sn)₂/hv/benzene, a higher (5'R)-stereoselectivity (7.5:1) was observed, however the combined yield of cyclized products (49%) was rather low due to the formation of a reduction product, 5'-O-acetyl-2',3'-O-isopropylideneuridine (35%).¹⁰)

The observed dominant formation of 7 suggests that the α -accetoxy 5'-carbon-radical involved in this reaction would have an O4'-O5' gauche-conformation¹¹) as depicted in 8. The putative conformational difference between 8 and 5 would be explicable in terms of larger group electronegativity of acetyl group (χ 2.864) in the former, which renders the radical species fairly localized, than that of trialkylstannyl group (SnEt3 for example, χ 1.795) in the latter.¹²) Based on this assumption, one would anticipate that an external radical acceptor could react preferentially from the *si*-face of 8, in case where uracil moiety cannot intervene in the reaction. To investigate along this line, 9-11 were prepared from the corresponding 5'-deoxy-5'-phenylseleno derivative and reacted with allyltributylstannane (Scheme 1). These results are summarized in Table 1.

Although the use of acetyl group for 2',3'-O-protection completely prevented the intramolecular process, the result obtained by using 9 (entry 1) was discouraging both in terms of yield of the products (12 and 13) and stereoselectivity. The (5'S) stereochemistry of 12 (mp 172-174 °C, acetone/hexane) was confirmed by X-ray

Table 1. Reactions of Uridine 5'-Monoselenoacetals (9-11) with Allyltributylstannane (5 equiv).

Entry	Compd.	Conditions	Yield (%)	Products (ratio)
1	9	AIBN/benzene/reflux, overnight	36	12 and 13 (10:9.5)
2	10	AIBN/benzene/reflux, overnight	84	14 and 15 (3:1)
3	10	AIBN/benzene/reflux, overnight ^{a)}	96	14 and 15 (3.6:1)
4	10	(Bu ₃ Sn) ₂ /hv/benzene/r.t., 5 h	56	14 and 15 (6:1)
5	10	Et3B/O2/THF/r.t., 3 days	0 ^{b)}	
6	11	AIBN/benzene/reflux, overnight	70	16 and 17 (6.6:1) ^{c)}
7	11	(Bu ₃ Sn) ₂ /hv/benzenc/r.t., 4 h	67	16 and 17 (10.2:1)
8	11	(Bu ₃ Sn) ₂ /hv/benzene/r.t., 4 h ^{a)}	70	16 and 17 (9.9:1)
9	11	(Bu3Sn)2/hv/toluene/0 °C, 4 h	66	16 and 17 (12.7:1)
10	11	(Bu ₃ Sn) ₂ /hv/benzene/r.t., 4 h ^d	69	16 and 17 (4.8:1)

a) Allyltriphenylstannane (5 equiv) was used.

b) The starting material (10) was recovered.

c) As a by-product, 5'-O-benzoyl-2',3'-bis-O-TBDMS-uridine (14%) was also isolated.

d) Allyl chloride (5 equiv) was used.

crystallography.^{8,13}) As can be seen in entries 2-4, 10 having 2',3'-bis-O-TBDMS protection gave a higher yield of the allylated products (14 and 15) with an improved (5'S)-selectivity. Inspection of a molecular model showed a severe steric hindrance between the 3'-O-TBDMS and the 5'-O-acetyl groups when the radical intermediate takes a O4'-O5' *anti*-conformation (a buttressing effect exerted by the 2'-O-TBDMS group may also be working as an additional factor to increase the diastereoselectivity). In contrast to the reactions of 3 and 6, it is conceivable that the above-mentioned steric hindrance is more important than the electronic effect in these cases, since the radical-mediated allylation of the corresponding 5'-aldehyde also resulted in the preferential formation of the (5'S)-isomer (AIBN/benzene/reflux, overnight, 5'S : 5'R = 3.6:1).¹⁴)

It would be reasonable to expect that a bulkier 5'-O-protecting group further encourages the (5'S)stereoselection. This turned out to be the case as listed in entries 6-10 where 11 was reacted to form 16 and 17. Even the reaction of 11 in refluxing benzene (entry 6) gave a slightly higher selectivity than that of 10 carried out at room temperature (entry 4). The highest (5'S)-selectivity was attained upon reacting 11 at 0 °C in toluene (entry 9). Entry 10 shows an inexpensive reagent allyl chloride¹⁵) can be used in place of allyltributylstannane only at the expense of the stereoselectivity. In conclusion, although 1,2-asymmetric induction of simple α -oxycarbon radicals has been reported to follow Cram's rule,³) the present study indicates that both electronic and steric effects of the substituent of the oxygen can alter diastereoface selectivity of the reaction, forming mainly anti-Cram product in certain cases. Acknowledgement. This work has been financially supported by Grant-in-Aid (No. 05771933, to K. H.) from the Ministry of Education, Science and Culture and also in part by the British Council (to H. T.).

REFERENCES AND NOTES

- 1) Danishefsky, S. J.; DeNinno, M. P.; Phillips, G. B.; Zelle, R. E.; Lartey, P. A. Tetrahedron 1986, 42, 2809-2819.
- 2) Hanessian, S.; Kloss, J.; Sugawara, T. J. Am. Chem. Soc. 1986, 108, 2758-2759.
- a) Giese, B.; Damm, W.; Dickhaut, J.; Wetterich, F. Tetrahedron Lett. 1991, 32, 6097-6100. b) Porter, N. A.; Giese, B.; Curran, D. P. Acc. Chem. Res. 1991, 24, 296-304.
- 4) Sugawara, T.; Otter, B. A.; Ueda, T. Tetrahedron Lett. 1988, 29, 75-78.
- 5) An intramolecular aldol reaction of 5-hydroxy-2',3'-O-isopropylideneuridine 5'-aldehyde has been reported and the sole formation of 2',3'-O-isopropylidene-6,5'(S)-cyclo-5-hydroxyuridine was explained in a similar manner based on Cram's rule: Rabi, J. A.; Fox, J. J. J. Org. Chem. 1972, 37, 3898-3901.
- 6) Myers, A. G.; Gin, D. Y.; Rogers, D. H. J. Am. Chem. Soc. 1993, 115, 2036-2038.
- 7) Haraguchi, K.; Saito, S.; Tanaka, H.; Miyasaka, T. Nucleosides Nucleotides 1992, 11, 483-493.
- 8) The atomic coordinates for 7 and 12 are available on request from the Cambridge Crystallographic Data Centre, University of Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, UK.
- 9) The J values (400 MHz) used to determine the stereochemistry of the minor product are shown below together with those of 7. The minor product: $J_{4',5'}=4.6$ Hz, $J_{5',6}=9.5$ Hz. Compound 7: $J_{4',5'}=2.2$ Hz, $J_{5',6}=3.5$ Hz.
- 10) When allyltributylstanhane (2 equiv) was used in stead of Bu₃SnH in this reaction, the combined yield of cyclized products increased significantly (84.7%: A 78% and B 6.7% yields).

- 11) For a review concerning the gauche effect: Wolfe, S. Acc. Chem. Res. 1972, 5, 102-111.
- 12) Inamoto, N.; Masuda, S. Chem. Lett. 1982, 1003-1006.
- 13) Through the experiments listed in Table 1, it became apparent that the H-6 resonance of the (5'S)-isomers (12, 14, and 16) uniformly observed at a lower field (around δ 7.9 ppm) than that of the (5'R)-counterpart (13, 15, and 17, around δ 7.2 ppm).
- 14) The 5'-aldehyde was prepared by oxidation of 2',3'-bis-O-TBDMS-uridine and, after purification by short-column chromatography, was directly used for the radical reaction (overall combined yield of the products: 38%). The oxidation was carried out according to the published procedure: Camarasa, M.-J.; De las Heras, F. G.; Pérez-Pérez, M. J. Nucleosides Nucleotides 1990, 9, 533-546.
- 15) Huval, C. C.; Singleton, D. A. Tetrahedron Lett. 1993, 34, 3041-3042.

(Received in Japan 14 February 1994; accepted 4 October 1994)